Multiple Pathways in Cyclodextrin-Catalyzed Hydrolysis of Perfluoroalkylamides ${ }^{1}$

Alejandro Granados and Rita H. de Rossi*
Contribution from the Instituto de Investigaciones en Fisico Quimica, Facultad de Ciencias Químicas, Departamento de Quimica Orgánica, Universidad Nacional de Córdoba, Sucursal 16, CC 61, 5016 Córdoba, Argentina
Received August 8, 1994. Revised Manuscript Received January 4, 1995^{\star}

Abstract

The hydrolysis of p-nitroanilide of perfluoroalkanoic acids, $\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{n} \mathrm{CO}^{-}$, with $n=1,2,3,5,6$, and 7 , $\mathbf{1 a - f}$, was studied in the presence of β-cyclodextrin (CD). All reactions were catalyzed by CD through the formation of a $1: 1$ and $1: 2$ inclusion complexes. The association equilibrium constants for the $1: 1$ complexes were dependent on the number of carbons of the fluoroalkyl chain, whereas those of the $1: 2$ complexes were almost independent. These results indicate that, in the former case, the perfluoroalkyl chain is included, while in the latter, the CD unit encloses the aryl ring. For compounds 1a,b both complexes were more reactive than the substrate itself. The ratio of the reaction of complexed to uncomplexed substrate had its highest value for $1 \mathbf{a}$ in the case of the $1: 1$ complex, and for $\mathbf{1 b}$, the $1: 2$ complex. This is attributed to the geometry of the complexes. Although compounds $\mathbf{1 c} \mathbf{c} \mathbf{e}$ reacted at the same rates in the free or $1: 1$ complexed form, CD accelerated the reactions because of an increase of the $\mathrm{p} K_{\mathrm{a}}$ of the substrate, which results in a higher concentration of the neutral reactive substrate at the same pH . Compound 1 f formed aggregates even at $10^{-6} \mathrm{M}$ concentration, and CD -induced deaggregation resulted in catalysis of the reaction.

Introduction

Cyclodextrins are cyclic oligomers of α-D-glucose which are produced by enzymatic hydrolysis of starch. Compounds with 6,7 , and 8 glucose units are called α-, β-, and γ-cyclodextrin. ${ }^{2}$ These compounds have been used as enzyme models for proteases and have proved to be good catalysts for the hydrolysis of esters. ${ }^{3}$ On the other hand, the hydrolysis of amides has been little studied in the presence of cyclodextrins. ${ }^{4-6}$

The effect of cyclodextrins on the hydrolysis of p-nitrophenyl alkanoates of different chain length has been studied in several laboratories, ${ }^{7-9}$ and it was found that the kinetic parameters varied, as the acyl chain length changed, consistent with the change in the mode of binding of the ester from aryl to alkyl group inclusion. ${ }^{9}$

The hydrolysis of m-nitrotrifluoroacetanilide and trifluoroacetanilide is inhibited by β-cyclodextrin (β-CD) and hydrox-ypropyl- β-cyclodextrin (HPCD), whereas the reaction of p-nitrotrifluoroacetanilide is catalyzed. ${ }^{10}$ This contrasting behavior of amides and esters is attributed to different rate-limiting steps in the mechanism of product formation of the catalyzed pathway,

[^0]i.e., in the hydrolysis of esters the nucleophilic attack of $C D$ on the carbonyl carbon of the ester is the rate-determining step, whereas in the hydrolysis of amides leaving of the amine from the tetrahedral intermediate is partially rate-determining.

In the reactions of p-nitrotrifluoroacetanilide in the presence of β-CD, complexes of $1: 1$ and $1: 2$ stoichiometry were formed, and both reacted faster than the substrate itself, but it was not possible to determine whether the $1: 1$ complex involves trifluoromethyl or p-nitrophenyl group inclusion. We considered it of interest to study the effect of changing the alkyl chain on the hydrolysis of amides in the hope that the analysis of the change in the kinetic parameters with the length of the alkyl chain might shed some light onto the nature of the complexes involved in the reactions. Also, the reactivity of perfluorinated compounds has great intrinsic interest due to the increasing use of these compounds in medicine ${ }^{11}$ and other areas of technological interest. ${ }^{12}$

We report here results on the hydrolysis of compound 1 in the presence of cyclodextrins. These reactions show some special features derived from the high hydrophobicity of the perfluoroalkyl chain. ${ }^{13}$

$$
\begin{gathered}
\mathbf{1 a}(n=1), \mathbf{1 b}(n=2), \mathbf{1} \mathbf{c}(n=3), \mathbf{1 d}(n=5), \mathbf{1 e}(n=6), \\
\mathbf{1 f}(n=7)
\end{gathered}
$$

[^1]Table 1. Calculated Rates and Equilibrium Constants for the Hydrolysis of 1 at $25^{\circ} \mathrm{C}$

substrate	PNT ${ }^{\text {b }}$	1a	1b	1c	1d	1e	$1 f$	3
$K_{\text {S1 }} \times 10^{-3} \mathrm{M}^{-1}$	0.100	2.9 ± 0.1^{c}	3.2 ± 0.1^{c}	1.6 ± 0.1^{c}	63 ± 1^{d}	100 ± 10^{e}	$\begin{aligned} & 84 \pm 9^{n} \\ & 24 \pm 3^{\circ} \end{aligned}$	
$K_{\text {S2 }}, \mathbf{M}^{-1}$	16 ± 6	41 ± 5^{c}	86 ± 6^{c}	23 ± 3^{c}	100 ± 10^{d}	20		
$k_{0}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	340 ± 10^{f}	$276 \pm 8 f$	$156 \pm 7 f$	$136 \pm 7 f$	$130 \pm 6 f$	$134 \pm 7 \mathrm{frg}$		
$K_{\text {SHI }} \times 10^{-3}, \mathrm{M}^{-1}$	0.07 ± 0.004	0.47 ± 0.04^{h}	2.0 ± 0.1^{h}	6.2 ± 0.1^{i}	180 ± 10^{j}	240 ± 10^{k}		1.0 ± 0.1^{e}
$K_{\text {SH2 }}, \mathrm{M}^{-1}$	60 ± 10	182 ± 30^{n}	49 ± 8^{n}	30 ± 7^{i}	100	20		90 ± 30^{e}
$k_{1} \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	10	18.8 ± 1.8^{t}	$3.4 \pm 0.4^{\prime}$	$1.00 \pm 0.06^{\prime}$	$1.37 \pm 0.13^{\prime}$	1.34		
$k_{2} \times 10^{-2}, \mathrm{M}^{-1} \mathrm{~s}^{-1}$	9	$6.8 \pm 0.6^{\prime}$	$16 \pm 4^{\prime}$	$3.0 \pm 0.2^{\prime}$	2.4 ± 0.5^{l}	4.3 ± 0.1^{m}		
k_{1} / k_{0}	2.9	6.8	2.2	0.76	1.0	1.0		
k_{2} / k_{0}	2.6	2.5	7.0	2.2	1.9	3.2		

${ }^{a}$ Solvent is water with less than 2% acetonitrile. ${ }^{b}$ Data from ref $10, \mathrm{PNT}=p$-nitrofluoroacetanilide. ${ }^{c}$ Determined spectrophotometrically from eq $5,[S]_{0}=5 \times 10^{-5} \mathrm{M}, \mathrm{pH}=10$. ${ }^{d}$ Idem note c, but $[\mathrm{S}]_{0}=10^{-5} \mathrm{M}$. ${ }^{e}$ Idem note c, but $[\mathrm{S}]_{0}=3 \times 10^{-6} \mathrm{M}$. ${ }^{f}$ Second-order rate constant in the solution without CD. $g[\mathrm{~S}]_{0}=3 \times 10^{-6} \mathrm{M}$. ${ }^{h}$ Determined spectrophotometrically, $[\mathrm{S}]_{0}=5 \times 10^{-5} \mathrm{M}, \mathrm{pH}=3$, using eq 5 . ${ }^{i}$ Idem note h, $[\mathrm{S}]_{0}=7.9$ $\times 10^{-6} \mathrm{M} .{ }^{j}$ Obtained from the change in $\mathrm{p} K_{\mathrm{a}}$ in the presence of $\mathrm{CD} .{ }^{k}$ Obtained from the fit to eq $12 .{ }^{t}$ Obtained from the fit to eq 11 . ${ }^{m}$ Obtained from eq 13. ${ }^{n}$ Apparent equilibrium constant $[S]_{0}=3 \times 10^{-6} \mathrm{M}$. ${ }^{o}$ Apparent equilibrium constant $[\mathrm{S}]_{0}=2 \times 10^{-5} \mathrm{M}$.

Results

The UV-visible spectrum of compounds $1 \mathrm{a}-\mathrm{d}$ at 2×10^{-5} and 1 e at $3 \times 10^{-6} \mathrm{M}$ concentrations shows maximum absorptions at 334 nm at $\mathrm{pH}=10$ and at 304 nm at $\mathrm{pH}=3$. This behavior is similar to that of p-nitrotrifluoroacetanilide, ${ }^{14}$ indicating that the substrate ionizes according to eq 1 . The species with $\lambda_{\max }=334 \mathrm{~nm}$ is identified as the anion 2 , while 1 has $\lambda_{\text {max }}=304 \mathrm{~nm}$.

2
The $\mathrm{p} K_{\mathrm{a}}$ of 1 a and 1 c was determined as 7.7 and 7.6, respectively, from the change in absorption with the pH in the range from 6.1 to 8.9. On the other hand, if at $\mathrm{pH}=10$ and $2 \times 10^{-6} \mathrm{M}$ substrate concentration shows a maximum absorption at 271 nm . Besides, the spectrum of $\mathbf{1 f}$ is almost the same in pure water ($\mathrm{pH} \approx 6$) and in water containing 0.5 M NaCl . A similar spectrum is obtained with 1 e at 1×10^{-5} M or higher concentration. With 1 e at $2 \times 10^{-5} \mathrm{M}$ there is a change in the spectrum from $\lambda_{\text {max }}=271 \mathrm{~nm}$ at pH 8.5 to $\lambda_{\text {max }}$ $=334$ at pH 11.9. From the change in absorbance with pH at 334 nm the apparent $\mathrm{p} K_{\mathrm{a}}=10.5 \pm 0.1$ was determined.

The hydrolysis of all the substrates produces p-nitroaniline, and the observed rate constant was measured at $\mathrm{pH}=10$ (Table $\mathrm{S} 1){ }^{15}$ Since it is known that the anion of p-nitrotrifluoroacetanilide is unreactive ${ }^{14}$ it is likely that the ions derived from 1 are also unreactive, therefore, the value of $k_{\text {obs }}$ must be corrected for ionization according to eq 2 .

$$
\begin{equation*}
k_{\mathrm{corr}}=k_{\mathrm{obs}} \frac{K_{\mathrm{a}}+\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]} \tag{2}
\end{equation*}
$$

The observed rate constants for the reactions of $\mathbf{1 a}-\mathbf{d}$ are independent of the substrate concentration in the range 3×10^{-6} to $2 \times 10^{-5} \mathrm{M}$. In the case of $\mathbf{1 e}$, it decreases from 5.1×10^{-5} to $6.5 \times 10^{-6} \mathrm{~s}^{-1}$ when the substrate concentration increases from 3×10^{-6} to $2 \times 10^{-5} \mathrm{M}$ (Table S2). ${ }^{15}$ The rates of the reactions of $\mathbf{1 f}$ at 2×10^{-6} and $3 \times 10^{-6} \mathrm{M}$ are the same within experimental error, and the pseudo-first-order rate plots are linear

[^2]up to 80 and 60%, respectively, despite the fact that the spectrum of the substrate indicates that the substrate is aggregated at this concentration.

Effect of Cyclodextrin on the Spectrum. The spectrum of $\mathbf{1 a} \mathbf{- d}$ at pH 10 shows a shift to longer wavelengths upon addition of CD. The spectra were recorded with the substrate concentration at $4.5 \times 10^{-5} \mathrm{M}$ for $\mathbf{1 a - c}, 2 \times 10^{-5} \mathrm{M}$ for $\mathbf{1 d}$, and CD in the range $0.02-10 \mathrm{mM}$; no isosbestic point is observed. These results were interpreted in terms of the formation of inclusion complexes (see below) of $1: 1$ and $1: 2$ stoichiometry (substrate:cyclodextrin), eqs 3 and 4 (S represents substrate 1 or its anion 2).

$$
\begin{gather*}
\mathrm{S}+\mathrm{CD} \stackrel{K_{1}}{\rightleftharpoons} \mathrm{~S} \cdot \mathrm{CD} \tag{3}\\
\mathrm{~S} \cdot \mathrm{CD}+\mathrm{CD} \stackrel{K_{2}}{\rightleftharpoons} \mathrm{~S} \cdot(\mathrm{CD})_{2} \tag{4}
\end{gather*}
$$

The absorbance data (A) at the wavelength of maximum difference with that of the substrate in water $\left(A_{0}\right)$, namely, 380 nm for $1 \mathrm{a}-\mathrm{c}$ and 400 nm for 1 d , were fitted ${ }^{16}$ with eq 5 , and the equilibrium constants for the two types of complexes were obtained. ${ }^{17}$

$$
\begin{equation*}
A=A_{0}+\frac{\left(\Delta \epsilon_{11} K_{1}[\mathrm{CD}]+\Delta \epsilon_{12} K_{1} K_{2}[\mathrm{CD}]^{2}\right)[1]_{0}}{1+K_{1}[\mathrm{CD}]+K_{1} K_{2}[\mathrm{CD}]^{2}} \tag{5}
\end{equation*}
$$

In eq $5 \Delta \epsilon_{11}$ and $\Delta \epsilon_{12}$ are the differences between the molar extinction coefficients of the complexes of $1: 1$ and $1: 2$ stoichiometry and the substrate. K_{1} and K_{2} are the corresponding equilibrium constants for the formation of the two types of complexes, and CD represents the free CD concentration which is considered to be equal to the stoichiometric concentration when $[C D]_{0}>10[1]_{0}$ or is calculated as indicated in the Appendix. Since the $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1}$ is below 8, the values of K_{1} and

[^3]$$
\mathrm{A}=\epsilon_{\mathrm{s}}[\mathrm{~S}]+\epsilon_{11}\left[\mathrm{~S}^{\cdot} \mathrm{CD}\right]+\epsilon_{12}\left[\mathrm{~S} \cdot(\mathrm{CD})_{2}\right]
$$

The concentrations of $S, S \cdot C D$, and $S \cdot(C D)_{2}$ are related to the added concentrations, $[S]_{0}$ and $[C D]_{0}$, of guest and host, respectively, by the equilibrium constants

$$
K_{1}=\frac{[\mathrm{S} \cdot \mathrm{CD}]}{[\mathrm{S}][\mathrm{CD}]} \quad K_{2}=\frac{\left[\mathrm{S} \cdot(\mathrm{CD})_{2}\right]}{[\mathrm{S} \cdot \mathrm{CD}][\mathrm{CD}]}
$$

and the initial condition that the sum of the respective concentrations is constant.

Scheme 1

K_{2} determined at $\mathrm{pH}=10$ represent the association constant of the anion 2 with CD, $K_{\mathrm{S} 1}$, and $K_{\mathrm{S} 2}$ (Table 1).

At $\mathrm{pH}=3$ where the substrate must be in its neutral form, the spectrum also changes with the addition of CD, and there is no isosbestic point. The measured absorbances were fitted with eq 5, and the values of the equilibrium constants $K_{\mathrm{SH} 1}=$ K_{1} and $K_{\mathrm{sH} 2}=K_{2}$ were calculated (Table 1) for compounds $1 \mathbf{a}^{-c}$.

Compounds $\mathbf{1 d}-\mathbf{f}$ are quite insoluble in acid media, so it was not possible to determine $K_{\mathrm{SH} 1}$ and $K_{\mathrm{SH} 2}$ as we did for the shorter chain compounds. To determine the value of $K_{\text {SHI }}$ for $1 \mathbf{d}$ we measured the change in absorption with pH at 334 nm in a solution containing $2 \times 10^{-5} \mathrm{M} 1 \mathrm{~d}$ and $8 \times 10^{-4} \mathrm{M} \mathrm{CD}$. The inflection point of the plot of absorption vs pH occurs at $\mathrm{pH}=$ 8.13 ± 0.04. Considering the thermodynamic cycle shown in Scheme 1 eq 6 follows.

$$
\begin{equation*}
K_{\mathrm{a}} K_{\mathrm{S} 1}=K_{\mathrm{SH} 1} K_{\mathrm{a}}^{\mathrm{CD}} \tag{6}
\end{equation*}
$$

Since there is a small decrease in $\mathrm{p} K_{\mathrm{a}}$ when the value for $\mathbf{1 a}$ is compared with that of trifluoroacetanilide, but the $\mathrm{p} K_{\mathrm{a}}$ values of $\mathbf{1 a}$ and $\mathbf{1 c}$ are about the same, it is likely that an additional CF_{2} group does not change the $\mathrm{p} K_{\mathrm{a}}$ significantly. Using $\mathrm{p} K_{\mathrm{a}}=$ 7.6, the value of $\mathrm{p} K_{\mathrm{a}} \mathrm{CD}=8.13$ determined in the presence of CD, and $K_{\mathrm{S} 1}$ determined using eq 5 , the $K_{\mathrm{SH} 1}$ can be obtained from eq 6. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1 d}$ was also determined in the presence of 0.01 M CD and gave the same value as that obtained at lower CD concentration. Raising the CD concentrations increases the fraction of $1: 2$ complex which should result in different $\mathrm{p} K_{\mathrm{a}} \mathrm{CD}$ if $K_{\mathrm{S} 2}$ is different from $K_{\mathrm{SH} 2}$. The fact that the $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{CD}}$ does not change indicates that $K_{\mathrm{SH} 2} \approx K_{\mathrm{S} 2}$.

The maximum absorption of $1 \mathbf{e}$ at $2 \times 10^{-5} \mathrm{M}$ with CD from 0.5×10^{-5} to $7 \times 10^{-5} \mathrm{M}$ changes from 271 to 334 nm (Figure 1), and there is an isosbestic point at 310 nm . At higher concentrations of CD , up to $0.9 \times 10^{-2} \mathrm{M}$, the wavelength maximum changes to 350 nm .

It is important to note that, in solutions of 1 e at $2 \times 10^{-5} \mathrm{M}$ or 1f at $3 \times 10^{-6} \mathrm{M}$, the addition of α - or γ-cyclodextrin or lactose ($1.6 \times 10^{-4}, 1.8 \times 10^{-4}$, and $5 \times 10^{-4} \mathrm{M}$, respectively) does not produce any change in the spectrum. On the other hand, hydroxylpropyl- β-cyclodextrin (HPCD) produces changes similar to those of $C D$ at the same concentration.
The solutions of $1 \mathbf{e}$ and $\mathbf{1 f}$ with $\mathrm{CD}>8 \times 10^{-4} \mathrm{M}$ become cloudy with time, therefore the equilibrium constants were determined using lower $C D$ concentrations. Under these conditions the square term in eq 5 is very small so only the values for the complex of $1: 1$ stoichiometry could be determined. Also, solubility reasons preclude measurements in acid solutions.
Since 1f is aggregated even at $3 \times 10^{-6} \mathrm{M}$, the measured equilibrium constant corresponds to eq 7 , and it is not directly comparable with the binding constants for the other substrates.

$$
\begin{equation*}
\mathrm{SH}_{x}+x \mathrm{CD}-x S \cdot \mathrm{CD}+\mathrm{H}^{+} \tag{7}
\end{equation*}
$$

To compare the behavior of the compound with the longest perfluorinated alkyl chain studied, 1f, with the hydrocarbonated analog, compound 3 , was prepared. This compound had $\lambda_{\max }$

3
at 317 nm , and its spectrum does not change when the concentration increases from 3×10^{-6} to $2 \times 10^{-5} \mathrm{M}$; however, the absorbance does not follow the Lambert-Beer law, indicating some degree of association. On the other hand, in the presence of a 10 mM CD concentration, the change in absorbance is linearly correlated with concentration. The spectrum of 3 at $3 \times 10^{-6} \mathrm{M}$ shows a small bathochromic shift when CD is added, and there is an increase of the intensity of absorption. The absorbance values at 317 nm were fitted by eq 5 , and K_{1} and K_{2} were calculated as 10^{3} and $90 \mathrm{M}^{-1}$, respectively.
Effect of CD on the Rate. The hydrolysis rate of all the substrates increases upon addition of cyclodextrin in a nonlinear fashion (Figure 2 is representative). The relative increase in rate, i.e., the ratio of the rate constant at the maximum concentration of CD to that without CD , increases as the length of the perfluoroalkyl chain increases, from example $k_{\text {corr }}{ }^{-}$ $(\mathrm{CD}=8 \mathrm{mM}) / k_{\text {corr }}(\mathrm{CD}=0)$ is $1.27,2.25$, and 3.78 for $1 \mathrm{a}, 1 \mathrm{~b}$, and 1c, respectively (Table S1). ${ }^{15}$ For substrate 1f, the addition of $3 \times 10^{-5} \mathrm{M}$ CD to a solution of the substrate $3 \times 10^{-6} \mathrm{M}$ changes the observed rate constant from $0.68 \times 10^{-5} \mathrm{~s}^{-1}$ to $7.5 \times 10^{-5} \mathrm{~s}^{-1}$. Also, changing the concentration of the substrate under these conditions does not produce any change in rates.

Discussion

The hydrolysis of p-nitrotrifluoroacetanilide takes place with the formation of a tetrahedral intermediate, and, at pH 10 , its formation is rate-determining. ${ }^{18,19}$ Since it is not likely that the relative rate of formation and decomposition of the intermediate changes with the chain length, the rates measured for 1 must represent the rate of formation of the intermediate.

The changes in the spectrum of 1 with the addition of cyclodextrin indicate that there is some sort of interaction between CD and the substrates. This interaction is probably the formation of inclusion complexes and not just an unspecific medium effect as evidenced by the fact that α - and γ-cyclodextrin ${ }^{20}$ or a linear sugar do not produce changes in the spectrum of 1 . In the inclusion of ligands by cyclodextrins in solution, a major factor in the stability of the resulting complex is thought to be the closeness of fit of the guest molecule within the CD cavity. Thus, for example, the binding constant values of adamantane carboxylate are $10^{5} \mathrm{M}^{-1}$ in $\beta-\mathrm{CD}$ but only 10^{2} M^{-1} in $\alpha-\mathrm{CD}$ and $10^{3} \mathrm{M}^{-1}$ in $\gamma-\mathrm{CD},{ }^{21}$ and those of sodium perfluorooctanoate with $\gamma-, \beta$-, and $\alpha-C D$ are 640,4500 , and essentially zero. ${ }^{22}$

It can be seen in Table 1 that the association constant for the 1:1 complex increases as the chain length increases for the neutral and anionic substrate as well. A reasonable good

[^4]

Figure 1. Spectrum of 1 e as a function of CD concentration. [CD], $\mathrm{M}=0\left(\lambda_{\text {max }}=270 \mathrm{~nm}\right), 5.2 \times 10^{-6}, 9.4 \times 10^{-6}, 2.6 \times 10^{-5}, 3.5 \times$ $10^{-5}, 5.3 \times 10^{-5}$, and $7 \times 10^{-5}\left(\lambda_{\max }=334 \mathrm{~nm}\right)$.

Figure 2. $k_{\text {corr }}$ vs [CD]: ©, 1a (right ordinate); $\mathbf{A}, \mathbf{1 b}$; $\mathbf{\square}$, $\mathbf{1 c}$ (left ordinate).
correlation of the form of eq 8 is obtained using the equilibrium constants for the neutral substrate. For the anions 2, the correlation is poorer, but it is evident that there is less sensitivity of the association constant with the number of carbons in the perfluoroalkyl chain, N.

$$
\begin{equation*}
\log K=1.91+0.66 N \quad r^{2}=0.987 \tag{8}
\end{equation*}
$$

The binding of organic substrates to cyclodextrins is largely determined by their hydrophobicity and size. ${ }^{23,24}$ For linear aliphatic molecules, both of these properties increase linearly with the number of carbons in the alkyl chain. ${ }^{25}$ The association equilibrium constant of p-nitrophenyl esters of n-alkanoic acids with $\beta-\mathrm{CD}$ correlate with the number of carbon atoms in the alkyl chain with slope of 0.194 ($\equiv 0.266 \mathrm{kcal} / \mathrm{mol}$) and that of

[^5]Scheme 2

acetate of p-alkyl phenol with a slope of $0.371(\equiv 0.509 \mathrm{kcal} /$ $\mathrm{mol}) .{ }^{9}$ The free energy for association of alkyl sulfonates with CD also correlates with the number of carbons in the alkyl chain, and there is a decrease in $0.64 \mathrm{kcal} / \mathrm{mol}$ for each methylene group. ${ }^{26}$ These values indicate that the nature of the moiety bonded to the alkyl chain is also important in determining the degree of dependence of K with the number of atoms in the alkyl chain. The free-energy difference of transferring one mole of CH_{2} groups from an aqueous environment to a micellar aggregate is estimated as $0.639 \mathrm{kcal} / \mathrm{mol}$ for ordinary surfactants and $0.946 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{CF}_{2}{ }^{27}$ Considering that the correlation of $\log K\left(2.303 \Delta G^{\circ} / R T\right)$ with N is a linear free-energy relationship, the value of 0.66 ($\equiv 0.808 \mathrm{kcal} / \mathrm{mol}$) for the slope appears to be in agreement with the results mentioned above. The driving force for inclusion to form the $1: 1$ complex is largely determined by a favorable interaction of the highly hydrophobic perfluoroalkyl chain. This is evident from the values of the equilibrium constants for $\mathbf{3}$ and $\mathbf{1 f}$. The comparison of the association constant of sodium perfluorooctanoate, namely, $4.5 \times 10^{3} \mathrm{M}^{-1}$, with that of substrate $1 \mathbf{e}, 2.41 \times 10^{5}$ M^{-1}, which has the same chain, indicates that there must be additional interactions with the aryl head group which favor complexation. Probably, the phenyl ring of the guest acts as a cap for the cone-shaped cavity of β-CD making the microenvironment more hydrophobic. ${ }^{28.29}$

The equilibrium constant for the complex of 1:2 stoichiometry is nearly independent of the alkyl chain length. This result indicates that the $1: 1$ complex has the structure indicated in $\mathbf{4}$, while the $1: 2$ complex can be represented as in 5 .

Considering the formation of the two types of complexes,

[^6]the mechanism of hydrolysis can be represented as in Scheme 2. The observed rate constant for this mechanism is given by eq 9 .
\[

$$
\begin{gather*}
k_{\mathrm{obs}}=\left[k_{0}+K_{\mathrm{SH} 1} k_{1}[\mathrm{CD}]+K_{\mathrm{SH} 1} K_{\mathrm{SH} 2} k_{2}[\mathrm{CD}]^{2}\right] / \\
{\left[1+\frac{K_{\mathrm{a}}}{\mathrm{H}^{+}}\left(1+K_{\mathrm{S} 1}[\mathrm{CD}]+K_{\mathrm{S} 1} K_{\mathrm{S} 2}[\mathrm{CD}]^{2}\right)+\right.} \\
\left.K_{\mathrm{SH} 1}[\mathrm{CD}]+K_{\mathrm{SH} 1} K_{\mathrm{SH} 2}[\mathrm{CD}]^{2}\right] \tag{9}\\
k_{0}=k_{0}^{\prime}\left[\mathrm{HO}^{-}\right] \\
k_{1}=k_{1}^{\prime}\left[\mathrm{HO}^{-}\right] \\
k_{2}=k_{2}^{\prime}\left[\mathrm{HO}^{-}\right]
\end{gather*}
$$
\]

Correcting k_{obs} (eq 9) as in eq 2 leads to eq 10.

$$
\begin{gather*}
k_{\mathrm{corr}}=\left[k_{0}+K_{\mathrm{SH} 1} k_{1}[\mathrm{CD}]+K_{\mathrm{SH} 1} K_{\mathrm{SH} 2} k_{2}[\mathrm{CD}]^{2}\right] / \\
{\left[F+(1-F)\left(1+K_{\mathrm{S} 1}[\mathrm{CD}]+K_{\mathrm{S} 1} K_{\mathrm{S} 2}[\mathrm{CD}]^{2}\right)+\right.} \\
\left.F\left(K_{\mathrm{SH} 1}[\mathrm{CD}]+K_{\mathrm{SH} 1} K_{\mathrm{SH} 2}[\mathrm{CD}]^{2}\right)\right] \tag{10}\\
F=\frac{\mathrm{H}^{+}}{K_{\mathrm{a}}+\mathrm{H}^{+}}
\end{gather*}
$$

Since all the reactions were studied at $\mathrm{pH}=10, F \ll 1$ and eq 10 simplifies to eq 11 .

$$
\begin{equation*}
k_{\mathrm{corr}}=\frac{k_{0}+K_{\mathrm{SH} 1} k_{1}[\mathrm{CD}]+K_{\mathrm{SH} 1} K_{\mathrm{SH} 2} k_{2}[\mathrm{CD}]^{2}}{1+K_{\mathrm{S} 1}[\mathrm{CD}]+K_{\mathrm{S} 1} K_{\mathrm{S} 2}[\mathrm{CD}]^{2}} \tag{11}
\end{equation*}
$$

All the equilibrium constants values of eq 11 for $1 \mathbf{a - c}$ were determined spectrophotometrically (see Results). Using these values and nonlinear fitting of the data to eq $11, k_{2}$ and k_{1} were obtained, and they are collected in Table 1. It can be seen that the $1: 1$ complex reacts faster than the free substrate only in the members of the series of shorter chain length (up to three carbon atoms). The ratio k_{1} / k_{0} has the higher value for 1a, and then it decreases until it reaches 1 . On the other hand, the ratio k_{2} / k_{0} is about $2-3$ for all the compounds, only for $\mathbf{1 b}$ it is 10 . The fact that the $1: 1$ inclusion complex of $\mathbf{1 a}$ and the $1: 2$ complex of $\mathbf{1 b}$ shows the highest reactivity in the series probably reflects the most favorable geometry of these complexes for the reaction. The length of 1a from the carbonyl carbon to the terminal trifluoromethyl group is $3.56 \AA$ and that of 1 b is $4.88 \AA$, the distance of the carbonyl carbon to the nitro group is $7 \AA .{ }^{30}$ Although the ratio k_{1} / k_{0} is approximately 1 for $\mathbf{1 d}$, the reactions of these compounds are faster in the presence of CD (Table $\mathrm{S} 1)^{15}$ due to an increase in the fraction of neutral substrate since the $\mathrm{p} K_{\mathrm{a}}$ of the complexed substrate is higher than that of the substrate. Similar results are obtained with 1 e and 1 f .

The change observed in the spectrum of $\mathbf{1 e}$ and $\mathbf{1 f}$ with concentration as well as the rate dependence with the concentration indicates that these substrates are aggregated. ${ }^{31}$ It is remarkable that the self-association of $1 e$ and $1 f$ should occur at such low concentrations. Considering that the cmc (critical micellar concentration) of $n-\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{COOH}$ is $9 \times 10^{-3} \mathrm{M}$ and that of $n-\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{COONa}$ is $3.6 \times 10^{-2} \mathrm{M},{ }^{27}$ it follows that the change of an OH group to a p-nitrophenylamino group increases

[^7]
Scheme 3

the tendency to aggregation by more than two orders of magnitude. These results are in agreement with the well-known importance of the hydrophilic group in amphiphilic compounds for determining the cmc. ${ }^{32}$ Besides, similar results are observed with hydrocarbon analogs: for example, the cmc of $\mathrm{C}_{12} \mathrm{H}_{25}$ COOK is $12.5 \mathrm{mM},{ }^{33}$ whereas p-nitrophenyl dodecanoate is aggregated already at $4 \times 10^{-6} \mathrm{M}^{34}$. Comparison of the spectrum of the aggregated species with that of the monomer in acidic and basic solution indicates that the aggregate is formed mainly by the neutral species. The amount of deprotonated substrate increases with the pH of the solution, and it is not aggregated at $2 \times 10^{-5} \mathrm{M}$ concentration. The effect of replacing a proton by a sodium ion is similar to that observed with carboxylic acid and the salt (vide supra).

The effect of the pH change on the aggregation equilibrium can be represented as in Scheme 3. The value of $\mathrm{p} K_{\text {app }}$ for $1 \mathbf{e}$ was determined as 10.5 at $2 \times 10^{-5} \mathrm{M}$, and the value of $\mathrm{p} K_{\mathrm{a}}$ can be estimated to be the same as that of the shorter member of the series, namely, 7.6. These differences are the consequence of the higher thermodynamic stability of the aggregate when compared with the free substrate.

The aggregation number is probably very small since the association appears to be complete at concentrations as low as $10^{-5} \mathrm{M}$. A value of 7 was determined for the aggregation number of sodium perfluorooctanoate at $0.5 \mathrm{M}^{35}$ and it is known that the aggregation number is dependent on the concentration. ${ }^{36}$

The value of the rate constant for the hydrolysis of 1 e changes approximately 10 times when the concentration of the substrate increases from $3 \times 10^{-6} \mathrm{M}$, where it is mainly a monomer, to $2 \times 10^{-5} \mathrm{M}$, where it is mainly in the aggregated form. The latter is the highest possible concentration in solution. When the concentration of the substrate and CD are both 2×10^{-5} M , the observed rate constant is the same as that of the free substrate. The change in rate under these conditions is attributed to the deaggregation of the substrate as a consequence of the formation of an inclusion complex with CD. The increase in critical micellar concentration of surfactants in the presence of CD is known, ${ }^{37}$ as is the effect of CD on the aggregation of dyes. ${ }^{38}$ When the concentration of CD increases from 2×10^{-5} to $10^{-3} \mathrm{M}$, the rate of hydrolysis of 1 e increases and shows a saturation effect. At this low CD concentration only the $1: 1$ complex was expected to be formed and, considering that $k_{0} \approx$ k_{1}, eq 11 simplifies to eq 12 . From this equation and the $k_{\text {corr }}$

$$
\begin{equation*}
k_{\mathrm{corr}}=\frac{k_{0}\left(1+K_{\mathrm{SH} 1}[\mathrm{CD}]\right)}{1+K_{\mathrm{S} 1}[\mathrm{CD}]} \tag{12}
\end{equation*}
$$

values at different CD concentration was calculated $K_{\mathrm{SH} 1}$. The effect of $C D$ on the rate of hydrolysis of this substrate is also

[^8]

Figure 3. $k_{\text {corr }}$ vs [CD] for the hydrolysis of $\mathbf{1 e}$.
attributed to an increase in the $\mathrm{p} K_{\mathrm{a}}$ of the included substrate as a consequence of $K_{\mathrm{S} 1}<K_{\mathrm{SH} 1}$.

When the CD concentration is in the range 10^{-3} to $1.2 \times$ $10^{-2} \mathrm{M}$, there is a linear dependence of the rate with CD concentration (Figure 3). Considering that $K_{\mathrm{S} 1}=10^{5} \mathrm{M}$ and that $K_{\mathrm{SH} 2}$ and $K_{\mathrm{S} 2}$ should be about 20 , eq 11 simplifies to eq 13 , which predicts linear dependence of $k_{\text {corr }}$ with CD concentration, provided that the first term is very small.

$$
\begin{equation*}
k_{\mathrm{corr}}=\frac{k_{0}}{K_{\mathrm{S} 1}[\mathrm{CD}]}+\frac{K_{\mathrm{SH} 1}}{K_{\mathrm{S} 1}} k_{1}+\frac{K_{\mathrm{SH} 1}}{K_{\mathrm{S} 1}} K_{\mathrm{SH} 2} k_{2}[\mathrm{CD}] \tag{13}
\end{equation*}
$$

From the intercept and slope of the plot of $k_{\text {corr }}$ vs CD it can be inferred that the $1: 1$ complex has approximately the same reactivity as the substrate and that the $1: 2$ complex is approximately three times more reactive than the free substrate.

Conclusions

The hydrolysis of perfluoroalkylamides $\mathbf{1}$ is catalyzed by β-cyclodextrin through four different mechanisms: formation of complexes of $1: 1$ and $1: 2$ stoichiometry, decrease in the acidity of the NH group, and deaggregation of the substrate induced by specific complexation with $\beta-C D$. Complexes of $1: 1$ stoichiometry are formed with inclusion of the perfluorinated chain in the hydrophobic cavity of cyclodextrin, and they react about twice as fast as the free substrate only for the members of shorter chain length (up to three carbons). The $1: 2$ complex involves one cyclodextrin enclosing the perfluoroalkyl chain and another one binding the p-nitrophenyl moiety. This complex reacts faster than the substrate for all the members of the series. With compounds where the $1: 1$ complex is as reactive as the free substrate, the reactions are accelerated by $C D$ because of an increase in the concentration of the reactive species, as a consequence of an increase in the $\mathrm{p} K_{\mathrm{a}}$ of the substrate induced by complexation.

The compounds with longer perfluorinated chains (8 or 9 carbons), 1e,f, have a greater tendency to aggregate even at low concentrations ($\geq 10^{-6} \mathrm{M}$ for $\mathbf{1 f}$), and cyclodextrin induces deaggregation of them even at equal molar concentration, indicating that the cyclodextrin-substrate binding constant is very high.

Table 2. Yields and Physical Properties of the Synthesized Compounds

compd	yield (\%)	elem. anal.						$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$
		found (\%)			calcd (\%)			
		C	H	N	C	H	N	
1 a	80	37.85	1.47	10.04	38.02	1.76	9.86	122-123
1b	40							$\begin{gathered} 84-85 \text { (lit. } .^{a} \\ 85-86) \end{gathered}$
1c	75	34.15	1.20	7.42	34.37	1.30	7.29	95-96
1d	60	31.86	0.74	6.26	32.23	1.03	5.78	98-99
1 e	60	3.97	0.66	5.85	31.46	0.94	5.24	105-106
1 f	60	30.63	0.80	4.67	30.82	0.86	4.79	119-120
2	50	64.32	8.28	10.0	64.75	7.91	10.07	79-80

${ }^{a}$ Sawicki, E.; Hauser, T. R.; Stanley, T. W. Anal. Chem. 1959, 12, 2063-2065.

Experimental Section

Aqueous solutions were made up from water purified in a Millipore apparatus. Acetonitrile Merck HPLC grade was used as received.
α-Cyclodextrin (Aldrich), β-cyclodextrin (Roquette), ${ }^{39} \gamma$-cyclodextrin (FDS publications (Chinoin Pharmaceutical and Chemical Works, Ltd, Budapest), Hungary), HPCD (Roquette), ${ }^{39}$ and soluble starch (Sigma) were used as received, but purity was periodically checked by UV spectroscopy. HPCD has an average of one hydroxypropyl group per glucose unit. Elemental analyses were carried out by Galbraith Laboratories, U.S.A.

The substrates 1 were prepared by the reaction of the appropriate perfluoroalkyl acid (Kanto Chemical Co$)^{40}$ with thionyl chloride (Merck) and then adding a solution of 4 -nitroaniline in acetonitrile. The mixture was refluxed for $2-6 \mathrm{~h}$ in the dark with stirring, and the product was precipitated by pouring the mixture onto ice. The solid was filtered off, washed with aqueous bicarbonate and then water, and dried under vacuum. Substrate $\mathbf{3}$ was prepared from p-nitroaniline dissolved in dried benzene added dropwise to nonanoyl chloride. The mixture was stirred at room temperature during 1 h , and the yellow precipitate was filtered out and washed with benzene. The purity of all the substrates was checked by thin-layer chromatography, and the spectrum of a completely hydrolyzed solution was compared with a mock solution of the corresponding aniline. The yields, elemental analyses and melting points of the compounds are given in Table 2.

Kinetic Procedures. The reactions were initiated by adding the substrate dissolved in acetonitrile to a solution containing all the other constituents. The total acetonitrile concentration was always less than 2%.

All reactions were run at $25^{\circ} \mathrm{C}$ and at constant ionic strength (0.5 $\mathrm{M})$, using NaCl as the compensating electrolyte. The observed rate constants were determined by following the appearance of the p nitroaniline at 380 nm . The change in absorbance during a kinetic run was recorded on a Shimadzu 260 recording spectrophotometer with a thermostated cell compartment. The reactions were followed up to $80-90 \%$ conversion. We did not detect any deviation from pseudo-first-order behavior in these conditions.

The pH of the solutions containing varying concentrations of cyclodextrin was adjusted by adding a drop of dilute acid or base. At pH 3-7 the buffer was $\mathrm{NaPO}_{4} \mathrm{H}_{2}$ with the appropriate amount of NaOH or HCl , and at $\mathrm{pH} 8-10$ the buffer was $\mathrm{CO}_{3}{ }^{2-} / \mathrm{CO}_{3} \mathrm{H}^{-}$. The total buffer concentration was in all cases 0.01 M . Below pH 3 and above pH 12 , HCl and NaOH were used, respectively.

The $\mathrm{p} K_{\mathrm{a}}$ of $1 \mathrm{a}, 1 \mathrm{c}$, and 1 e were determined by measuring the change in absorbance at 300 and 334 nm with pH . Values found were 7.7 for $\mathbf{1 a}$ and 7.6 for $\mathbf{1 c}$. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1 d}$ was determined in the presence of $8 \times 10^{-4} \mathrm{M}$ and $10^{-2} \mathrm{M} \beta$-cyclodextrin and gave the same value within experimental error, i.e., 8.13 ± 0.05.

The association equilibrium constants with $\beta-\mathrm{CD}$ were determined from the difference spectrum of solutions containing the appropriate concentrations of $C D$ and the substrate. For $1 \mathbf{a}-\mathbf{c}$ a 1 cm cell was

[^9]used, but for $\mathbf{1 d}-\mathbf{f}$ a 5 cm cell was chosen because of the low concentration of the substrates due to their solubility. These solutions were filtered through a $0.45 \mu \mathrm{~m}$ filter.

Appendix

The free CD concentration was calculated following Connors methodology. ${ }^{41}$ The absorbance A of the solution is measured as a function of the total $C D$ concentration, $[C D]_{0 i}$, the system is described by eqs 14 and 15 , where $\dot{\eta}_{j}$ and λ_{k} are param-

$$
\begin{gather*}
Y_{i}=f\left([\mathrm{CD}]_{i}, \eta_{j}\right) \tag{14}\\
{[\mathrm{CD}]_{0 i}=g\left([\mathrm{CD}]_{;}, \lambda_{i}\right)} \tag{15}
\end{gather*}
$$

eters and $[C D]_{i}$ is the free cyclodextrin concentration. The form of the functions and the nature of the parameters depend on the system being studied and on the assumed stoichiometric model. The parameters include the desired stability constant, K.
We use the expression of the measured absorbance for the Y function and the mass balance for [CD] $]_{0 i}$, assuming that the complex formed has $1: 1$ stoichiometry. This assumption is valid provided that the concentration of the ligand is not higher than $10^{-4} \mathrm{M}$. Equations 14 and 15 thus become eq 16 and $17 . \Delta A / b$

$$
\begin{gather*}
\frac{\Delta A}{b}=\frac{\Delta \epsilon K_{11}[\mathrm{~S}]_{0}[\mathrm{CD}]_{i}}{1+K_{11}[\mathrm{CD}]_{i}} \tag{16}\\
{[\mathrm{CD}]_{0 i}=[\mathrm{CD}]_{i}+\frac{K_{11}[\mathrm{CD}]_{i}[\mathrm{~S}]_{0}}{1+K_{11}[\mathrm{CD}]_{i}}} \tag{17}
\end{gather*}
$$

is the change in absorbance per centimeter when the total [CD] changes from 0 to $0_{i}, K_{11}$ represents the 1:1 association constant, [S$]_{0}$ is the total concentration of the substrate, and $\Delta \epsilon$ is the difference in molar absorptivities of the substrate and complex.

Equation 15 can be expanded into a Taylor's series, which is truncated to give an expression that can be solved explicitly for $[C D]_{i}$. The Taylor's series of eq 15 is eq 18 ,

$$
\begin{array}{r}
{[\mathrm{CD}]_{0 i}=g\left([\mathrm{CD}]_{0 i}\right)+g^{\prime}\left([\mathrm{CD}]_{0 i}\right)\left([\mathrm{CD}]_{i}-[\mathrm{CD}]_{0 i}\right)+} \\
\frac{g^{\prime \prime}\left([\mathrm{CD}]_{0 i}\right)}{2}\left([\mathrm{CD}]_{i}-[\mathrm{CD}]_{0 i}\right)^{2}+ \tag{18}
\end{array}
$$

where $g\left([C D]_{0 i}\right)$ is given by eq 17 and $g^{\prime}\left([C D]_{0 i}\right)$ and $g^{\prime \prime}\left([C D]_{0 i}\right)$ are the first and second derivatives of eq 17 with respect to $[C D]_{i}$ evaluated for $[C D]_{i}=[C D]_{0 i}$. Replacing $g\left([C D]_{0 i}\right)$ and $g^{\prime}\left([C D]_{0 i}\right)$ in eq 18 truncated at the linear term and solving for $[C D]_{i}$, eq 19 is obtained.

$$
\begin{gather*}
{[\mathrm{CD}]_{i}=[\mathrm{CD}]_{0 i}-\frac{1}{g^{\prime}\left([\mathrm{CD}]_{0 i}\right)} \frac{K_{11}[\mathrm{~S}]_{0}[\mathrm{CD}]_{0 i}}{\left(1+K_{11}[\mathrm{CD}]_{0 i}\right)}} \tag{19}\\
g^{\prime}\left([\mathrm{CD}]_{0 i}\right)=1+\frac{K_{11}[\mathrm{~S}]_{0}}{1+2 K_{11}[\mathrm{CD}]_{0 i}+K_{11}^{2}[\mathrm{CD}]_{0 i}^{2}}
\end{gather*}
$$

The concentration of free CD was calculated for each i concentration of total CD; starting from an estimated value of K_{11}, a group of CD_{i} is thus calculated, and from this iteratively new values of K_{11} are calculated until convergency is found.

Acknowledgment. This research was supported in part by the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina (CONICET), and the Consejo de Investigaciones Científicas y Tecnológicas de la Provincia de Córdoba, Argentina (CONICOR). A.G. is a grateful recipient of a fellowship from CONICOR.

Supplementary Material Available: Table S1 listing the observed rate constants for the hydrolysis of compounds 1 vs cyclodextrin concentration and Table S 2 containing the observed rate constant for 1 e vs substrate concentration (5 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA9426204
(41) Connors, K. A. Binding constants: The measurement of molecular complex stability; John Wiley and Sons: New York, 1987.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 1, 1995.
 (1) Preliminary results were reported in Actualidades de Fisico Química Orgánica, Florianopolis, Brasil, 1991, 346.
 (2) (a) Bender, M. L.; Komiyama, M. Cyclodextrin chemistry; SpringerVerlag: New York, 1977. (b) Saenger, W. Angew. Chem., Int. Ed. Engl. 1980, 19, 344. (c) Tabushi, I.; Kuroda, Y. Adv. Catal. 1983, 32, 417. (d) Smith, D. R. Chem. Ind London 1994, 14.
 (3) (a) Breslow, R.; Trainor, G.; Ueno, A. J. Amer. Chem. Soc. 1983, 105, 2739. (b) Van Etten, R. I.; Sebastian, J. E.; Clowes, G. A.; Bender, M. L. J. Am. Chem. Soc. 1967, 89, 3262. (c) Komiyama, M.; Bender, M. L. J. Am. Chem. Soc. 1978, 100, 4576. (d) Tee, O. S.; Takasaki, B. K. Can. J. Chem. 1985, 63, 3540.
 (4) Komiyama, M.; Bender, M. L. J. Am. Chem. Soc. 1977, 99, 8021.
 (5) Mokimoto, S.; Suzuki, K.; Yashihiro, T. J. Chem. Soc. Jpn. 1984, 57, 175.
 (6) Komiyama, M.; Bender, M. L. Bioorg. Chem. 1977, 6, 323.
 (7) Tee, O. S. Carbohydr. Res. 1989, 191, 181.
 (8) Bonora, G. M.; Fornasier, R.; Scrimin, P.; Tonellato, U. J. Chem. Soc., Perkin Trans. 2 1985, 367.
 (9) Tee, O. S.; Mazza, C.; Du, X.-X. J. Org. Chem. 1990, 55, 3603.
 (10) Granados, A.; de Rossi, R. H. J. Org. Chem. 1993, 58, 1771.

[^1]: (11) Ries, J. G. Colloids Surf. A; Physicochem. Eng. Aspects 1994, 84, 33 and references cited therein.
 (12) De Lisi, R.; Milioto, S. Chem. Rev. 1994, 67.
 (13) Mukerjee, P.; Handa, T. J. Phys. Chem. 1981, 85, 2298.

[^2]: (14) Stauffer, C. E. J. Am. Chem. Soc. 1972, 94, 7887.
 (15) Supplementary material.

[^3]: (16) Nonlinear adjustment was carried out using the following: Sigmaplot, version 6.1; Jandel Corporation: 1993.
 (17) Equation 5 is derived assuming that the system can be described as a mixture of independently absorbing species. In this case the optical density of the solution (A) is the sum of the contribution by the free molecules and the two inclusion complexes

[^4]: (18) Komiyama, M.; Bender, M. L. J. Am. Chem. Soc. 1978, I00, 5977.
 (19) Huffman, R. W. J. Org. Chem. 1980, 45, 5004.
 (20) $\alpha-, \beta$-, and γ-cyclodextrins have six, seven, and eight glucose units joined in a torus. The sizes of their cavities differ in width, but not in depth.
 (21) Cromwell, C.; Bystrom, K.; Eftink, M. R. J. Phys. Chem. 1985, 89, 326.
 (22) Palepu, R.; Reinsborough, V. C. Can. J. Chem. 1989, 67, 1550.

[^5]: (23) Komiyama, M.; Bender, M. J. Am. Chem. Soc. 1978, I00, 2259.
 (24) Schneider, H.-J.; Kramer, R.; Simova, S.; Schneider, V. J. Am. Chem. Soc. 1988, 110, 6442.
 (25) James, K. C. Solubility and Related Properties; Marcel Dekker, Inc.: New York, 1986.

[^6]: (26) Park, J.; Song, H. J. Phys. Chem. 1989, 93, 6454.
 (27) Shinoda, K.; Hato, M.; Hayashi, T. J. Phys. Chem. 1972, 76, 909.
 (28) Emert, J.; Breslow, R. J. Am. Chem. Soc. 1975, 97, 670.
 (29) (a) Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1992, 114, 58825883. (b) Tong, L.-H.; Hou, Z.-J.; Inoue, Y.; Tai, A. J. Chem. Soc., Perkin Trans 2 1992, 1253-1257.

[^7]: (30) These values were calculated using PCM, Serena Software.
 (31) Jiang, X.-K. Acc. Chem. Res. 1988, $21,362$.

[^8]: (32) Myers, D. Surfactants Science and Technology, 2nd ed.; VCH Publishers: 1992; p 114.
 (33) Reference $32, \mathrm{p} 115$.
 (34) Jiang, X.-K.; Xing-Ya, L.; Huang, B.-Z. Proc. Indian Acad. Sci., Chem. Sci. 1987, 98, 408.
 (35) Turro, N. J.; Lee, C. C. P. J. Phys. Chem. 1982, 86, 3367.
 (36) Berr, S. S.; Jones, R. R. M. J. Phys. Chem. 1989, 93, 2558.
 (37) Funasaki, N.; Yodo, H.; Hada, S.; Neya, S. Bull. Chem. Soc. Jpn. 1992, 65, 1323.
 (38) Herkstroeter, W. G.; Martic, P. A.; Farid, S. J. Am. Chem. Soc. 1990, II2, 3583-3589.

[^9]: (39) This compound was gift from the pharmaceutical company Ferromet S. A., Buenos Aires, Argentina.
 (40) This compound was generously provided by Dr. Takaaki Sonoda, Kyushu University, Japan.

